中國科學院物理研究所
北京凝聚態物理國家研究中心
SF10組供稿
第101期
2020年12月14日
黑磷中的黑洞:費米子的高溫霍金輻射

  霍金輻射是黑洞因量子漲落向外輻射粒子的現象。它是理解量子力學與廣義相對論之間聯系的關鍵。然而,在宇宙中,黑洞的霍金輻射因其極低的霍金溫度(納開爾文量級,遠低于微波背景輻射溫度)尚未被實驗證實。爲了提高霍金溫度便于實驗觀測,人們提出了利用經典流體、量子流體、光纖等各種人工系統模擬黑洞及其輻射的方案。然而,到目前爲止,玻色-愛因斯坦凝聚體中的聲學黑洞的納開爾文量級的霍金溫度依然很難被實驗觀測。光纖中的光學模擬黑洞也備受爭議。

  以上這些體系均是基于聲子、光子等玻色子體系。與此不同的是,固體裏存有大量電子、准電子等費米子,由于這些基本費米子間的靜電力強于引力很多數量級,由狄拉克半金屬模擬的費米性黑洞應具有較高的霍金溫度。但是,因缺乏可控的狄拉克費米子體系,此類費米子的霍金輻射的物理機制和真實材料的實現是大家普遍關注的重點,但一直未被解決。

  最近,中國科學院物理研究所/北京凝聚態物理國家研究中心表面物理国家重点实验室的博士生刘行、宋晨晨在孟胜研究員的指导下,与北京理工大学孙家涛教授和美国犹他大学刘锋教授、黄华卿博士后合作,在前期发现黑磷的电子能带可受周期性光场的调制产生具有可调节斜率的狄拉克锥的基础之上【见Phys. Rev. Lett. 120, 237403 (2018)】,他们进一步利用第一性原理量子激发动力学计算和量子隧穿模型分析,预言了首个模拟费米子霍金辐射的真实系统,即激光场辐照下的黑磷(图1)。这个系统呈现出迄今为止最高、且实验可探测的霍金温度(1-10 K)。

  他们发现,通过辐照特定的空间非均匀激光场,二维黑磷呈现出在空间上连续分布的第二、第三、第一类狄拉克电子态。三类费米子的有效作用势分别与史瓦西黑洞内部、边缘、外部所对应的引力势一致(图2),因此可用狄拉克费米子体系模拟黑洞行为及黑洞的量子辐射效应。量子效应使狄拉克电子从第二类狄拉克区域向第一类狄拉克区域隧穿,形成了与史瓦西黑洞辐射同样的普朗克辐射谱(图3)。实时的第一性原理激发动力学模拟表明,具有比较弱功率(0.0003V/Å)的太赫兹(~7 THz)激光就可以实现对黑洞行为的模拟,并且黑磷在这一激光场不会被损坏。

  更重要的是,光辐照双层黑磷产生的“黑洞”呈现出3K的超高霍金温度。这远高于引力黑洞及其它人工玻色黑洞的辐射温度,表明此理论方案可以在当前实验室中实现。光照黑磷中的超高温费米黑洞辐射的理论预言为实验观测霍金辐射奠定了基础,也为研究凝聚态物质中的类天体物理现象提供了新的平台和手段。相关成果发表在近期出版的Chin. Phys. Lett. 37, 067101 (2020)(Express Letters)上。该工作得到科技部重点研发计划(2016YFA0300902,2015CB921001)和国家自然科学基金委(11774396, 91850120, 11934004)的资助。


图1. 双层黑磷中激光辐照产生费米子“黑洞”示意图。

图2.黑洞(Black Hole, BH)内外的光锥(上图)与模拟费米子黑洞内外的狄拉克锥(下图)的对照。

圖3.雙層黑磷中的費米子史瓦西“黑洞”所需的(a)光場分布及(b)霍金輻射譜。